Where we stand on an effective COVID-19 vaccine

Finding effective treatments for COVID-19 and following medical advice on social distancing and wearing masks in public is one thing. But to really put the disease and its effect on daily life in the history books instead of the news requires an effective vaccine. Developing herd immunity without assistance could take a long time, and even then subsequent generations could be vulnerable to COVID-19 and periodic breakout might plague humanity. Even in Sweden, which chose to avoid shutdowns, building herd immunity is “surprisingly slow,” according to state epidemiologist Anders Tegnell. Given that the entire world is deeply affected by COVID-19, resources and effort are going into developing a vaccine at a faster pace than any other in history. Once one proves effective, vaccine availability is the next giant hurdle.

Clinical Trials

It can normally take 10 to 15 years to develop a vaccine against a given infectious disease. The Ebola vaccine Merck developed in four years is one the fastest on record. However, the imperative for a COVID-19 vaccine is much higher. Governments are eager to invest in one because solving this problem solves a lot of other problems.

There is reason to be cautiously optimistic. Moderna’s mRNA-based vaccine is set to enter Phase 3 trials in July, with the company trying to recruit 30,000 participants in the US. Whereas traditional vaccines involve injecting weakened or dead virus into subjects, RNA versions create a synthetic that mimics natural viral infections. China-based Sinovac Biotech intends to conduct Phase 3 trials in Brazil in July using traditional weakened or dead virus methods. Should those prove effective, they could be approved and available in early 2021. AstraZeneca aims for Phase 3 trials in the US in August, with a Phase 2/3 trial already underway in the UK in partnership with the University of Oxford. Johnson & Johnson’s Janssen Pharmaceutical Companies could put a vaccine in Phase 3 trials in September. Ideally, for wider vaccine availability, more than one of these or the 100-plus development programs will pan out.

US-based Novavax teamed with Nucleus Network to begin a Phase 1 vaccine trial in Melbourne and Brisbane in May. The results of the first phase, involving 131 volunteers, will be announced in July. Should the vaccine prove safe and effective in them, the trial could move to a second phase with thousands of participants in several countries. The University of Queensland has begun recruiting volunteers for the first phase of its vaccine, also in partnership with Nucleus Network.

Finding something that works is one thing. Getting enough doses for billions of people is quite another.

Vaccine Availability

The day a vaccine is approved, there will be much rejoicing. Then the real work will begin. Global distribution will take time and depending on which country’s pharmaceutical company wins the race, could be fraught with political stumbling blocks. No matter how wide the geographic spread, the first groups of people who will get a vaccine will be elderly people and essential workers. Getting the world back in full swing might require as much as 80% of the population being immunised. That means billions of doses of vaccine, perhaps more than one for every person on Earth since more than one round could prove far more effective.

“There is no one company in the world who has a manufacturing capacity to supply the planet,” Moderna CEO Stéphane Bercel told Barron’s. “And we need those because we have to vaccinate a lot of people to stop this public health emergency.”

What companies can do to start the real work before approval is manufacture at risk. It’s called that because it’s, well, risky. Rather than make just enough doses for clinical trials, manufacturing at risk assumes success and makes as many doses as possible for immediate distribution. If the trial fails, those doses and a lot of money go down the drain. On the flip side, a company that earns approval can immediately ship vaccines out, winning acclaim and a financial windfall.

“We are in parallel making doses, making vaccine in anticipation that we’ll be able to show it’s working and be able to start deploying it by the end of this year,” Novavax research head Dr. Gregory Glenn said. The company could produce at least 100 million doses this year and 1.5 billion in 2021, he said.

Not Just First

Literally billions of people are invested in quick vaccine availability, but among the most invested are the pharmaceutical companies developing them, investors in those companies, and politicians with an election coming up. There’s immense pressure to get to market quickly. Rushing can lead to an ineffective vaccine going out. That can lead to people who think they are immune contracting or spreading COVID-19 and another disaster. That would erode trust and could mean when an effective vaccine did come around, people would be hesitant to take it. There is already a vocal subset of the population staunchly opposed to vaccination. An ineffective COVID-19 vaccination could grow those numbers and stunt herd immunity. A Finder survey found that only 68% of respondents said they would get a vaccine, with 21% unsure and 10% saying they definitely would not.

A vaccine does not need to be 100% effective to be good enough. MMR vaccines check in in the 90s in terms of efficacy. Flu vaccines vary because the virus changes every year and manufacturers must make an educated guess prior to flu season. Even 70% would help immensely. And that could be either 70% effective in reducing illness of 70% effective at preventing infection.

Part of developing an effective vaccine is diversity in clinical trials. Genetics can play a significant role in how different people’s immune systems respond. Without diversity, a vaccine could be significantly more effective for people of certain ethnic and socioeconomic backgrounds than others.

Aside from RNA and traditional methods, what might prove most effective is a spike protein. The spike protein of the novel coronavirus is what attaches to cell. If people’s immune systems can learn to recognise the spike protein they might be able to fight the virus off before it attaches and infects. Novavax uses a recombination technique that makes copies of the spike protein and packages them into nanoparticles small enough for injection. The University of Queensland uses molecular clamp technology to replicate the virus’ genetic sequence without injecting the actual virus into people.

Once there is widespread vaccine availability, we probably still won’t know immediately whether a vaccine confers immunity for life or will need to be annual like a flu shot. But with so many of the world’s top medical minds at work on a vaccine, theirs is reason to be hopeful we’ll have one in record time.